
Nebula: Distributed Edge Cloud for Data Intensive
Computing

Mathew Ryden, Kwangsung Oh, Abhishek Chandra, and Jon Weissman
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{mathew, ohkwang, chandra, jon}@cs.umn.edu

Abstract—Centralized cloud infrastructures have become the
de-facto platform for data-intensive computing today. However,
they suffer from inefficient data mobility due to the centralization
of cloud resources, and hence, are highly unsuited for dispersed-
data-intensive applications, where the data may be spread at
multiple geographical locations. In this paper, we present Neb-
ula: a dispersed cloud infrastructure that uses voluntary edge
resources for both computation and data storage. We describe
the lightweight Nebula architecture that enables distributed data-
intensive computing through a number of optimizations including
location-aware data and computation placement, replication, and
recovery. We evaluate Nebula’s performance on an emulated
volunteer platform that spans over 50 PlanetLab nodes dis-
tributed across Europe, and show how a common data-intensive
computing framework, MapReduce, can be easily deployed and
run on Nebula. We show Nebula MapReduce is robust to a wide
array of failures and substantially outperforms other wide-area
versions based on a BOINC like model.

Keywords—Cloud programming models and tools, MapReduce,
Data Intensive, Geo-distributed, Edge, Voluntary

I. INTRODUCTION

Today, centralized data-centers or clouds have become
the de-facto platform for data-intensive computing in the
commercial, and increasingly, scientific domains. The appeal
is clear: clouds such as Amazon AWS and Microsoft Azure
offer large amounts of monetized co-located computation and
storage well suited to typical processing tasks such as batch
analytics. However, many Big Data applications rely on data
that is geographically distributed, and is not collocated with
the centralized computational resources provided by clouds.
Examples of such applications include analysis of user data
such as blogs, video feeds taken from geographically separated
cameras, monitoring and log analysis of server and content
distribution network (CDN) logs, and scientific data collected
from distributed instruments and sensors. Such applications
lead to a number of challenges for efficient data analytics
in today’s cloud platforms. First, in many applications, data
is both large and widely distributed and data upload may
constitute a non-trivial portion of the execution time. Second,
data upload coupled with the high overhead in instantiating
virtualized cloud resources, further limits the range of appli-
cations to those that are either batch-oriented or long-running
services. Third, the cost to transport, store, and process data
may be outside of the budget of the small-scale application
designer or end-user.

We propose the use of an edge cloud for both computation

and data storage to address the first two aspects. The use
of edge resources is attractive for two reasons. First, many
applications relying on distributed data have characteristics
making the edge attractive: large amount of processing (e.g.,
filtering and aggregation) can be done independently in-situ,
which yields significant data compression reducing the data
movement costs for any subsequent centralized processing.
Secondly, the edge is highly attractive today with the pro-
vision of powerful multi-core, multi-node desktop and home
machines coupled with increasing amount of high bandwidth
Internet connectivity. If cost is an issue, then we advocate
the use of volunteer edge resources, otherwise, one could
envision using monetized edge resources across CDNs or even
ISPs, provided these were equipped to offer computational
services. In this paper, we present Nebula: a dispersed cloud
infrastructure that explores the use of volunteer resources to
democratize data-intensive computing. In contrast to existing
volunteer platforms such as BOINC [1], which is designed for
compute-intensive applications, and file-sharing systems such
as BitTorrent [4], our Nebula system is designed to support
distributed data-intensive applications through a close inter-
action between both compute and data resources. Moreover,
unlike many of these systems, our goal is not to implement a
specific resource management policy, but to provide flexibility
for users and applications to specify and implement their own
policies.

In this paper, we present the lightweight Nebula architec-
ture that enables distributed in-situ data-intensive computing
and evaluate its performance on an emulated volunteer plat-
form that spans over 50 PlanetLab [3] nodes across Europe. An
early version of Nebula was described in our prior work [2],
[19] but did not focus on data-intensive computing and fault
tolerance, the subject of this paper. Nebula implements a
number of optimizations to enable efficient exploitation of
edge resources for in-situ data-intensive computing including
location-aware data and computation placement, replication,
and recovery. We focus on the systems and implementation
aspects of Nebula in this paper. We show how a common data-
intensive computing framework, MapReduce, can be easily
deployed, and run on Nebula. We also explore a range of
failure scenarios, a common occurrence in volunteer systems,
and show our system is robust to arbitrary failures of both
hosted compute and data nodes that may occur anywhere
within the system.

We compare results to two systems modeled on volunteer
platforms that have been proposed in the literature, one with

a centralized filesystem [1], and one further tuned for MapRe-
duce by allowing distributed intermediate data [5], running on
our compute and data platforms. We show that the Nebula
approach can greatly outperform both baselines on our testbed
(by 580% and 200% respectively for a common MapReduce
application with 1GB of input data) and exhibits good scaling
and fault tolerance properties.

II. NEBULA

In this section we describe the design of Nebula, a location
and context-aware distributed cloud infrastructure that is built
using voluntary edge resources. Both volunteer nodes and
input data could be spread across the world, and Nebula will
take advantage of this geographic spread by locating nearby
computational resources.

A. Nebula Design Goals

Nebula has been designed with the following goals in mind:

• Support for distributed data-intensive computing: Un-
like other volunteer computing frameworks such as
BOINC that focus on compute-intensive applications,
Nebula is designed to support data-intensive applica-
tions that require efficient movement and availability
of large quantities of data to compute resources. As a
result, in addition to an efficient computational plat-
form, Nebula must also support a scalable data storage
platform. Further, Nebula is designed to support appli-
cations where data may originate in a geographically
distributed manner, and is not necessarily pre-loaded
to a central location.

• Location-aware resource management: To enable ef-
ficient execution of distributed data-intensive appli-
cations, Nebula must consider network bandwidth
along with computation capabilities of resources in
the volunteer platform. As a result, resource manage-
ment decisions must optimize on computation time as
well as data movement costs. In particular, compute
resources may be selected based on their locality and
proximity to their input data, while data may be staged
closer to efficient computational resources.

• Sandboxed execution environment: To ensure that vol-
unteer nodes are completely safe and isolated from
malicious code that might be executed as part of
a Nebula-based application, volunteer nodes must
be able to execute all user-injected application code
within a protected sandbox.

• Fault tolerance: Nebula must ensure fault tolerant
execution of applications in the presence of node
churn and transient network failures that are typical
in a volunteer environment.

B. Nebula System Architecture

Figure 1 shows the Nebula system architecture. Nebula
consists of volunteer nodes that donate their computation and
storage resources, along with a set of global and application-
specific services that are hosted on dedicated, stable nodes.
These resources and services together constitute four major
components in Nebula (described in more detail in Section III):

Nebula Services

Dedicated Nodes

Data Nodes Compute Nodes

DataStore

Master

Nebula

Central

Nebula

Monitor

ComputePool

Master

CCCompCCC putep NodeNNN dN ese

Volunteer Nodes

Nebula

Users

lal

Fig. 1. Nebula system architecture.

• Nebula Central: Nebula Central is the front-end for
the Nebula eco-system. It provides a simple, easy-to-
use Web-based portal that allows volunteers to join
the system, application writers to inject applications
into the system, and tools to manage and monitor
application execution.

• DataStore: The DataStore is a simple per-application
storage service that supports efficient and location-
aware data processing in Nebula. Each DataStore con-
sists of volunteer data nodes that store the actual data,
and a DataStore Master that maintains the storage
system metadata and makes data placement decisions.

• ComputePool: The ComputePool provides per-
application computation resources through a set
of volunteer compute nodes. Code execution on
a compute node is carried out inside a Google
Chrome Web browser-based Native Client (NaCl)
sandbox [21]. Compute nodes within a ComputePool
are scheduled by a ComputePool Master that
coordinates their execution. The compute nodes
use the DataStore to access and retrieve data, and
they are assigned tasks based on application-specific
computation requirements and data location.

• Nebula Monitor: The Nebula Monitor does perfor-
mance monitoring of volunteer nodes and network
characteristics. This monitoring information consists
of node computation speeds, memory and storage
capacities, and network bandwidth, as well as health
information such as node and link failures. This
information is dynamically updated and is used by
the DataStore and ComputePool Masters for data
placement, scheduling and fault tolerance.

These components work with each other to enable the
execution of data-intensive applications on the Nebula plat-
form. Each volunteer node can choose to participate as a data
node or a compute node depending on whether it donates its
storage, compute resources, or both. The volunteer nodes are
multiplexed among different applications, so each compute

(or data) node can be part of multiple ComputePools (or
DataStores). The centralized components only provide control
and monitoring information, and all data flow and work flow
happens directly between the volunteer nodes in the system.
As a result, these components do not become bottlenecks in
the execution path.

C. Nebula Applications

A Nebula application may consist of a number of jobs.
A job contains the code to carry out a specific computation.
For example, a MapReduce application contains a map and
reduce job in the Nebula parlance. An application execution is
referred to an instantiation of the application. An application
is typically associated with an input dataset, which consists of
multiple data objects (files). The input dataset can be centrally
located or geographically distributed across multiple locations.
In this work, we assume the data has already been stored into
Nebula and that there are many more files than tasks, thus
there is no need to further decompose the input files (though
they may require aggregation). Future work will explore how
external data can be inserted into Nebula and either aggregated
or decomposed as needed. A job may also depend on other
jobs, in which case the dependent job will not be executed until
all of its predecessors are complete, and its input dataset may
be specified as the output(s) of the predecessor job(s). Each
job consists of multiple tasks (typically identical in structure),
which can be executed in parallel on multiple compute nodes.
Each task is associated with the job executable code and a
data partition of the input dataset, upon which the code is
executed. The executable code is Native Client code (a set of
.nexe files) that can be executed in the Native Client sandbox
on the compute nodes. The input data is identified by a set
of filenames that refer to data already stored in Nebula. After
this, the compute nodes retrieve data from the DataStore to
execute the corresponding tasks.

III. NEBULA SYSTEM COMPONENTS

A. Nebula Central

Nebula Central is the front-end for the Nebula eco-system.
It is the forward facing component of the system for managing
applications and resources in the system. It exposes a Web
front-end portal where volunteers can join to contribute com-
pute and storage resources to Nebula, and application writers
(or users) can upload their applications and initiate execution.
This API is used to load the application executables, input
files, and DataStore parameters for the various application
files (Table I). Nebula Central uses these parameters to create
an expanded internal representation of the entire application,
the component jobs, and the set of tasks. It also instantiates
an application-specific DataStore and ComputePool Master
that handle the data placement and job execution for the
application.

The input data management depends on the desired be-
havior of the DataStore as specified by the application. For
example, it may store multiple copies of the data so that each
online DataStore node gets a share proportional to the inverse
of that node’s average upload bandwidth. This behavior allows
computation to have good locality to the data sources. Sim-
ilarly, the application can customize the scheduling behavior

TABLE I. NEBULA CENTRAL JOB INPUTS

Argument Applicability Function

title Application
The human-readable name
of the application instantia-
tion.

namespace Application The namespace for input
and output files.

source files Application A list of filenames to use as
source inputs for the jobs.

output file prefix Application The filename prefix to use
for outputs of jobs.

metadata Per-Job
Job information such as the
whether it uses source files
or depends on other jobs.

javascript Per-Job
The javascript code to use
when running a job for com-
putation.

job scheduler Application The scheduler to be used by
the ComputePool Master.

executables Per-Job The NaCl executables for
the jobs.

DataStore
parameters Per-Job

The parameters for input
data locations and parame-
ters for jobs for output.

task parameters Per-Job

Various settings for a task
including timeouts, mini-
mum bandwidths, replica-
tion settings, and failure tol-
erances.

of the ComputePool. Some of this customization occurs via
parameterization and in other cases by component replacement
(envisioned in the future). We presently support a set of default
policies that are shown to perform well in our experiments.
Nebula Central also supports the concurrent execution of
multiple applications and provides tools to monitor progress
via the generation of user-friendly dynamic graphs and maps.

B. DataStore

The DataStore is designed to provide a simple storage
service to support data processing on Nebula. In volunteer
computing, nodes are typically interconnected by WAN and
bandwidth is usually low. Optimizing data transfer time is
crucial to efficient data processing in this case. Nebula Central
will ultimately decide how to partition or share resources
across multiple applications to meet their requirements.

Data in a DataStore is stored and retrieved in units of files.
Files are organized using namespaces. Files are considered
immutable and file appends or edits are not supported. A
DataStore consists of multiple data nodes that store the actual
data, and a single DataStore Master that manages these nodes
and keeps track of the storage system metadata.

1) Data Node: The data nodes are volunteer nodes that do-
nate storage space and store application data files. A data node
is implemented as a light-weight Web server. The data nodes
support two basic operations—store and retrieve—that
are exposed to clients to store and retrieve files to and from
the DataStore.

It is the responsibility of the data node to update the entries
corresponding to a file in the associated DataStore Master

TABLE II. DATASTORE MASTER OPERATIONS

Operation Parameters Description

get_data_nodes_to_store None Returns an ordered list of data nodes for a client to store
data

get_data_nodes_to_retrieve filename, namespace Returns an ordered list of data nodes for a client to
retrieve data

set filename, namespace, nodeid, filesize Sets a new entry for a file
ping nodeid, isonline Reports a data node as being online
found nodeid Reports another node as online (for P2P communication)

whenever a new file is uploaded. Each data node also sends
heartbeats to the DataStore Master(s) to register itself and to
let it know that it’s online.

DataStore clients, such as compute nodes that need to store
or retrieve data to/from the DataStore, use a combination of
these operations to get and store data. All the intelligence is
part of the DataStore Master and is transparent to the clients.
The only overhead on the client is to be able to detect the
failures of data nodes and fall back to other nodes provided
by the DataStore Master (discussed below).

2) DataStore Master: The DataStore Master keeps track
of data nodes that are online and file metadata. The DataStore
Master supports a set of operations to manage the data nodes
and to carry out effective data placement decisions (Table
II). Some operations are invoked by DataStore clients before
storing or retrieving data to/from the DataStore. Others are
invoked by the data nodes and are used to exchange metadata
and health information.

Load balancing and locality awareness: The DataStore
Master can achieve better performance via load balancing
and locality awareness by appropriately ordering the lists
returned to the clients via the get_data_nodes_to_*
operations. To achieve better load balancing, the list of nodes
can be randomized or ordered by their load (or available
storage capacity). On the other hand, locality awareness can
be achieved by ordering data nodes based on their bandwidth,
latency or physical distance from the requesting client. For
example, consider a case where a node is both a compute node
and a data node. For requests originating from that particular
compute node, the operations will, by default, place the local
data node at the head of the list.

Fault tolerance: The DataStore Master achieves fault toler-
ance through replication of data. A user can specify replication
parameters (number of replicas) for the application data, and
the Master then ensures that the requested number of replicas
are maintained for each file in the DataStore. It keeps track
of online data nodes and actively tries to replicate data if the
number of replicas falls below a threshold. The list of data
nodes returned to the client also helps provide fault tolerance
in the event that the preferred node in the list fails. Since such
failures are expected, providing a list reduces the number of
roundtrip calls to the Master that a client needs to make and
removes the need for maintaining state at the DataStore Master.

C. ComputePool

The ComputePool provides computational resources to
Nebula applications. The ComputePool is managed by a Com-
putePool Master which manages the volunteer compute nodes,

assigns tasks to them, and monitors their health and execution
status.

1) Compute Node: Compute nodes are volunteer nodes
that carry out computation on behalf of an application. All
computations in Nebula are carried out within the NaCl
sandbox [21] provided by the Google Chrome browser. The
compute node will be provided a Web page for each task
execution that contains Javascript code with embedded native
code for efficiency. The use of NaCl gives us several advan-
tages, the largest of which is that a volunteer node is protected
from malicious code while performing at near native-speed.
All it takes to join Nebula for a Chrome user is to enable
the NaCl plugin and point the browser to Nebula Central.
The NaCl sandbox does have a constrained memory-space,
and current applications must be designed to fit inside of it,
although future designs can mitigate the risk by moving data
to disk and processing while streaming the data.

Fault tolerance: The compute node can handle a variety of
failure types including issues starting the NaCl subsystem,
missing or corrupt data files, and slow file transfers. The sys-
tem uses heartbeats to ensure the system is running properly.
If the heartbeats are missed, the compute node reports the task
has failed and attempts to run a new task. In most cases,
the task will just be reattempted, either by the same node
or another node. However, if multiple nodes have reported a
single data node for slowness, or if the input data no longer
exists, the ComputePool Master will try to regenerate the input
files if it was produced by an earlier task execution.

2) ComputePool Master: The ComputePool Master is re-
sponsible for the health and management of the compute
nodes. It provides a Web-based interface to allow its con-
stituent compute nodes to download job executables provided
via Nebula Central.

The most important function of the Master is the scheduling
of tasks to compute nodes. The ComputePool Master binds to
a scheduler selected by the application writer1. The scheduler
uses monitoring information to decide which tasks should be
run and where. The scheduling decisions can be as simple as a
random scheduler, to the more complex adaptive MapReduce
scheduler, which attempts to approximate network and com-
putation abilities and needs to complete a task in minimal time
despite nodes going up and down during execution.

As an example, we present the locality-aware scheduling
algorithm, LA, that will be used for MapReduce later:

1) Get updates about the current state of the network.

1We envision that schedulers can be defined on a per-framework basis, e.g.,
for MapReduce, and shared by many applications.

2) Estimate remaining time to completion for each
running task. If the estimate has been exceeded,
adjust the projected running time to account for the
inaccuracy.

3) For each not running task, create estimates for each
(node, task) pair. This estimate is based on the trans-
fer time for task inputs and results to the DataStore
and execution time.

4) For each (node, task) pair, we estimate its time to
finish based on the remaining time for any running
task on a node plus the estimate of running the task
on that node. We then order these pairs in a priority
queue using this estimated finishing time.

5) For each task, we select the single best node to
complete a task. To prevent a high-speed node from
attracting too many concurrent tasks, we cap the
number of tasks per node at 2 in each iteration of
the scheduler.

Load balancing and locality awareness: To achieve load
balancing, the compute scheduler can take into account the
CPU speeds and current loads on different compute nodes to
assign them tasks. To achieve locality awareness the compute
scheduler can assign tasks to compute nodes based on the
location of the input data for the tasks. The scheduler maintains
a list of preferred tasks for each compute node based on its
location, and assigns tasks from this list when the compute
node requests additional work. This location-based task allo-
cation mechanism, along with the locality awareness support
in the DataStore, can reduce network overhead substantially.

Fault tolerance: The ComputePool Master allows re-execution
of tasks to achieve fault tolerance in the face of compute node
failures. Fault tolerance to soft failures can be handled by a
compute node itself, as discussed above. If a compute node
becomes unresponsive during the execution of a task by timing
out for a certain duration, the ComputePool Master reassigns
the unfinished task to another compute node. The timeout
value is set large enough to allow for transient failures or
missed heartbeats, so that resource wastage can be avoided
if a node becomes responsive again quickly and indicates that
it is making progress on the task.

D. Nebula Monitor

The Nebula Monitor does performance aggregation of
compute clients and data nodes. It accepts queries from the
other Nebula Services for pair-wise bandwidth and latency
statistics. These statistics are used by the other services to
make decisions including scheduling compute tasks, combin-
ing inputs for tasks, and almost all DataStore decisions. At the
moment, the Nebula Monitor uses a simple moving average of
its metrics. In the future we would like to combine information,
such as multiple simultaneous requests, to better predict the
operation of a node and to better note when performance
is lagging to take immediate action (e.g., moving data from
a node, changing destination nodes of a running task). The
Nebula Monitor also metrics like bandwidth, latency, etc.
between the compute nodes and Nebula Central that can be
used as defaults for unknown information.

DataStore

Master

ComputePool

Master

Data Node Compute Node

1. Pull task with

list of input files

2. Pull task with list of input files

5. Get list of

Data Nodes

7. Update Master

that Data Node

has file

3. Get file from DataStore

6. Store results in DataStore

4. Perform computation

on Input data

8. Report task as complete.

Return location of output

Fig. 2. Control and data flow and steps involved in executing a task on the
Nebula infrastructure.

E. Task Execution in Nebula

Having described the different components of Nebula, we
now put them all together and describe how a task is executed
in Nebula. Once an application is injected into the system
via Nebula Central and the input data has been placed within
the DataStore, the compute nodes are ready to accept tasks
and start executing them. Figure 2 shows the various steps
involved in the execution of a task. The compute node contacts
ComputePool Master periodically and asks for tasks. The
scheduler would assign tasks to the compute node based on the
scheduling policy. The compute node would then download the
application code, as well as the input data from the DataStore
Nodes. The computation starts in NaCl as soon as these
downloads are completed. Once computation is performed,
the outputs are then uploaded back to the DataStore. Finally,
DataStore bandwidths between the compute node and the
DataStore platforms as well as the location of the output files
are provided to the ComputePool Master.

The size and composition of the ComputePool and Data-
Store are application-specific. In addition, how global Nebula
resources are allocated across applications is controlled by a
policy implemented at Nebula Central. These issues are outside
the scope of the current paper but discussed in the Future Work
section.

IV. MAPREDUCE ON NEBULA

To illustrate the efficacy of using Nebula for distributed
data-intensive computing, we have implemented a MapReduce
application framework on top of Nebula. MapReduce [6] is a
popular programming paradigm for large-scale data processing
on a cluster of computers, and provides a simple programming
framework for a large number of data-intensive computing
applications. For this reason, we have selected MapReduce
as our first live Nebula application framework as a test of our
approach. We note that our Nebula MapReduce framework
is not based on existing MapReduce implementations such
as Hadoop/HDFS; rather it is implemented completely on
top of the Nebula infrastructure and utilizes services such as
DataStore and ComputePool for all storage and compute needs.

A MapReduce Nebula application consists of two jobs,
map and reduce. The reduce is dependent on the map job,
so it cannot execute until the map job completes. Writing
applications for the Nebula framework involves a few simple
steps. Map and reduce jobs are written in C++ and compiled

against the specialized compilers provided by the NaCl SDK.
The output of the compilation phase is a set of .nexe files
which can be uploaded to Nebula Central for distribution via
its Web interface. The input data of a MapReduce application
needs to be pushed to the DataStore first and all these inputs
need to share the same namespace. A user will then need to
post a MapReduce application and instantiate it by providing
parameters including the number of map tasks, number of
reduce tasks, namespace, and a list of inputs.

Once a MapReduce application has been instantiated, the
ComputePool Master can start assigning tasks to compute
nodes. Each map task obtains its input data from the Data-
Store, performs the map function on it, and the result list is
partitioned into as many output files as there are reduce tasks.
The output files are uploaded to the DataStore at the end of
each map task. A reduce task downloads the map outputs for
its partition, carries out the reduce operation, and uploads the
output back to the DataStore.

A MapReduce scheduler was designed to optimize MapRe-
duce task execution and data movement and is used by the
ComputePool and DataStore Master for computation and data
respectively. The former uses a greedy heuristic that chooses
the fastest nodes to complete each task exploiting available
nodes, even if this creates the occasional duplicate task exe-
cution. This method has been shown to run the vast majority
of tasks quickly while preventing the often-occurring long-tail
of MapReduce execution. This is the locality-aware scheduler
of Section III-C2.

V. EVALUATION

To evaluate the performance of Nebula, and specifically
MapReduce on Nebula, we have configured an experimental
setup on PlanetLab [3], where we have deployed Nebula and
carried out a set of experiments. We also emulate several
existing volunteer computing models on PlanetLab and treat
them as a baseline for our evaluations.

A. Experimental Setup

For our experiments, we have set up 52 nodes on Planet-
Lab [3] Europe (PLE), each with Google Chrome and other
required software packages installed. We limit ourselves to
PLE instead of the entirety of PlanetLab due to software
requirements of Google Chrome. These nodes are located in 15
different countries and have bandwidth ranging from 256Kbps
to 32Mbps. All the dedicated Nebula services (Nebula Central,
DataStore and ComputePool Masters, and Nebula Monitor)
are hosted on a single machine with Dual Core Pentium
E2200 @ 2.4GHz, 4GB RAM, 150GB Hard Drive, running
Ubuntu 12.04 Linux. It also hosts MySQL databases to support
Nebula Central and ComputePool Masters (2.2GB), and Redis
databases (800MB) to support Nebula Central and DataStore
Masters.

We perform experiments using the Nebula MapReduce
Wordcount and InvertedIndex applications. Our input dataset
consists of a set of 1500 ebooks from Project Gutenberg
which amounts to 500 MB of data. We expand and contract
this dataset to yield different input dataset sizes for different
experiments. We note that the maximum data size in our
experiments is limited due to PlanetLab bandwidth caps, an

Central

DataStore

Node Node

Node

Node Node

Node

(a) CSCI

Central

Initial

DataStore

Node Node

Node

Node Node

 Node

(b) CSDI

Fig. 3. Data flow in CSCI and CSDI.

issue that we believe should not be a problem in a true
volunteer or commercial edge system. Memory limitations also
limit the maximum amount of computation available today.
We also configure the number of mappers and reducers, with
each mapper performing computation over a given number of
books. We vary the number of mappers (and thus the number
of books per mapper) and reducers during experiments.

For comparison, we emulate two alternate volunteer com-
puting models on top of the Nebula infrastructure: Central
Source Central Intermediate Data (CSCI) and Central Source
Distributed Intermediate Data (CSDI). These models cor-
respond to the data models supported by BOINC [1] and
a MapReduce-tuned BOINC version [5] respectively. These
models have three key aspects which differentiate them from
Nebula. First, in CSCI and CSDI the input data is centralized.
The central server is usually the single source of input data.
To model this, we use a dedicated host as the single source
of data. Second, the decision where to store intermediate data
(map output) is different. In CSCI, intermediate data is stored
centrally whereas in CSDI it is stored locally on the node that
performed the map task. To emulate the CSDI system, we use
a configuration where all nodes have both their compute and
storage capabilities switched on, and further, the DataStore
Master always tries to use a data node already located at
the compute node (if one exists). Third, the schedulers are
different. In CSCI and CSDI, tasks are assigned randomly
without concern for data locality, while the default Nebula
scheduler is locality-aware. The data flow for the CSCI and
CSDI model are illustrated in Figure 3.

In the Nebula model, the input data is already randomly
distributed data as would be the case in the applications we are
targeting (see Section I for examples). Given this data place-
ment, Nebula tries to select the best nodes for computation
to minimize the overall execution time. We compare CSCI
and CSDI against Nebula MapReduce using both a random
scheduler (Nebula-Random) and the locality-aware scheduler
(Nebula-LA) presented earlier (Section III-C2).

In all our experiments, we run a data node and compute
node on each available PlanetLab node (this number varies
from 38-52 in our experiments due to PlanetLab node failures),
except where specified. The input data is placed on a fixed set
of 8 randomly selected data nodes with a replication factor of
2. Intermediate and output data can be placed on any available
data node, and is not replicated unless specified.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

CSCI CSDI NEBULA CSCI CSDI NEBULA

R
un

 T
im

e
(s

)

500MB

1GBMAP
REDUCE

(a) Comparison to CSCI and CSDI

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Random LA Random LA Random LA

R
un

 T
im

e
(s

)

Nebula Scheduler

500MB

1GB

2GBMAP
REDUCE

(b) Nebula scheduler comparison

Fig. 4. MapReduce comparison across different environments.

B. Performance Comparison

The first set of experiments directly compare different
approaches in a volunteer environment. The MapReduce Word-
count application was run multiple times on each of the
different environments with different size datasets (500MB,
1GB, and 2GB). All experiments used 300 map tasks each,
along with 80, 160, and 320 reduce tasks for the 500MB,
1GB, and 2GB input sizes respectively. The CSCI and CSDI
systems had a centralized data node with an average upload
bandwidth of 4Mbps, which is similar to the bandwidth of
many residential and commercial sites.

Figure 4(a) compares the Nebula model with the locality-
aware scheduler against the CSCI and the CSDI models. The
results indicate that the Nebula approach is far superior to
these baselines due to the removal of data bottlenecks. For
map tasks, Nebula is able to find compute nodes close to the
data sources, and outperforms both CSCI and CSDI which
rely on a centralized data node. For reduce tasks, both CSDI
and Nebula exhibit good performance compared to CSCI, as
they retain intermediate data locally. As the data size increases
to 1GB, Nebula continues to perform better (by 580% and
200% vs. CSCI and CSDI respectively), and the larger data size
shows the additional benefit of locality-awareness by selecting
compute nodes based on performance estimation.

To see the impact of choice of scheduler, Figure 4(b)
compares the locality-aware (LA) scheduler to a Random
scheduler within Nebula, which randomly assigns tasks to
compute nodes. We find that the LA scheduler outperforms the
Random scheduler by 16-34% across the different data sizes.
Also, the performance difference between the two schedulers
is higher for larger data sizes due to increasing data transfer
costs. The benefit of locality is particularly pronounced for the
map tasks, which are scheduled close to the input data sources.
The reduce tasks benefit less from locality, since they need to
download intermediate data from multiple data nodes.

C. Fault Tolerance

In the next set of experiments, we induce crash failures in
both the compute and data nodes during execution. As dis-
cussed in Section III, Nebula has mechanisms to provide fault
tolerance in the presence of node failures. These mechanisms
include re-execution of tasks to handle compute node failures

and data replication to handle data node failures. The goal
of these experiments is to show the robustness of the Nebula
infrastructure in the presence of such failures, even if it comes
with a performance cost. We note that there were a large
number of background transient failures even in the previous
set of performance experiments that we are already robust
to. For instance, for the 500MB experiment with Nebula-LA
(Figures 4(a) and 4(b)), we had a total of 1557 transient failures
during the run (364 process restarts, 1146 NaCl execution
failures, and 47 data transmission failures), which the system
recovered from.

All of these experiments use the Nebula system setup with
the Nebula-LA (locality aware) scheduler. We use a 500MB
input data size, along with 300 map and 80 reduce tasks for
all experiments. We note that we actually kill the associated
processes for these tests, rather than simulating the failures,
so these experiments illustrate the robustness of Nebula in the
presence of real-life failures.

1) Compute node failures: We first show the impact of
compute node failures. In these experiments, we do not fail
the data nodes, and do not use data replication for any of the
data in the system. In the first experiment, we kill a subset
of compute nodes part-way (50%) through the execution of
the map phase, and these nodes are considered failed for the
remaining duration of the experiment. As a result, the progress
of the tasks running on the failed nodes is lost, and these
tasks are re-executed by the ComputePool Master on other
nodes, once the failures are detected. Figure 5(a) shows the
results of inducing these failures. We find that the system
is relatively stable in the presence of a moderate number of
node failures (compared to a more severe scenario considered
next). This is because the Wordcount application in these
experiments is input data bandwidth limited, and there are
sufficient computational resources available to carry out the
computation even with the induced failures.

In the next experiment, we induce more severe failures,
failing a large part of the system throughout the run. In this
case, we randomly kill a subset of compute nodes, but allow
failed nodes to come back up after a period of about 90 seconds
to ensure that a fixed proportion of nodes in the system are
failed at all times. Figure 5(b) shows the results of inducing
these failures. In this case, we see that beyond a certain rate of
failures (over 50%), the runtime deteriorates. At this point there

 0

 200

 400

 600

 800

 1000

 1200

0 1 3 5 7 9

R
un

 T
im

e
(s

)

Number of Failures

MAP
REDUCE

(a) Fixed number of compute node failures

 0

 500

 1000

 1500

 2000

 2500

 3000

0% 10% 20% 30% 40% 50% 60% 65% 70%

R
un

 T
im

e
(s

)

Rate of Compute Node Failure

MAP
REDUCE

(b) Fixed proportion of compute node failures

Fig. 5. Performance of Nebula in the presence of compute node failures.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 1 3 5 7 9

R
un

 T
im

e
(s

)

Number of Failures

MAP
REDUCE

(a) No replication

 0

 200

 400

 600

 800

 1000

 1200

 1400

Disabled Enabled Disabled Enabled

R
un

 T
im

e
(s

)

Replication

No Node Failures

3 Node FailuresMAP
REDUCE

(b) Replication vs. no replication

Fig. 6. Performance of Nebula in the presence of data node failures.

are so many compute failures that the system starts becoming
compute-limited, and has to re-execute many unfinished tasks.

2) Data node failures: Next, we show the impact of data
node failures. In the first set of experiments, we do not use
data replication for intermediate data. The input data is still
replicated twice, and data node failures are induced such that
a copy of the map input data will always be available. However,
a data node failure will result in the loss of intermediate data
needed for reduce tasks, leading to the re-execution of map
tasks needed to recreate this data (this re-execution time is
attributed to reduce time in the results). In this experiment,
we kill a subset of data nodes part-way (50%) through the
execution of the map phase. As a result, intermediate data
generated by already finished map tasks uploaded to the failed
data nodes is lost, and has to be recreated by re-executing
the corresponding map tasks. Figure 6(a) shows the results of
inducing these failures. The results show that the total runtime
increases as we increase the number of data node failures,
because of more map task re-executions, though the system
is robust to such failures and is able to complete the runs.
However, for this reason, runtime increases with failure rate
unlike the compute node failure scenarios in Figure 5(a).

Finally, we show the benefit of using data replication for
intermediate data as well. In this case, we enable replication
which creates multiple copies of intermediate data, so that the
system can handle data node failures without the need for re-

executing tasks. Figure 6(b) compares the system performance
with replication enabled against no replication for two sce-
narios: one without data node failures, and one with 3 node
failures. For the 3 node failure case, we kill 3 data nodes
50% through the execution of the map phase, similar to the
first experiment. We see that the total runtime is reduced for
the replication case. This is because even though replication
adds overhead resulting in higher map times, the reduce times
are lower, since the system does not need to re-execute tasks
corresponding to lost data. In fact, the runtime is lower even
for the no failure case, because with more replicas available,
the ComputePool Master has more choices to assign tasks to
compute nodes in a locality-aware manner.

D. Scalability

In these experiments, we present results which show that
Nebula is able to scale up with the number of nodes and data
size. Being a voluntary computing system, a future Nebula
deployment could consist of thousands of volunteer nodes that
are connected to the system simultaneously. Considering this,
one of the design goals is that centralized components can
scale up as required. More importantly, as the amount of data,
the number of nodes, and the geographic spread increases,
the system should be able to take advantage of the added
number of resources, the greater amount of parallelism, and
more choices for locality-aware resource allocation, without
bottlenecks forming. Figure 7 shows the performance of Neb-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 20 30

R
un

 T
im

e
(s

)

Number of Nodes

MAP
REDUCE

Fig. 7. Node Scalability of Nebula.

ula as we increase the number of compute and data nodes in the
system from 10-30 each (i.e., 30 refers to 30 compute nodes
and 30 data nodes). All these experiments use an input data
size of 250MB, along with 250 map and 80 reduce tasks. The
input data is still kept on 8 data nodes, however, all compute
nodes can participate in the computation and all data nodes
can store intermediate data. We see that the runtime decreases
with increasing system size. In particular, we see that while the
map time remains the same due to the bandwidth constraints
of the input data nodes, the reduce time decreases with the
increasing size of the system. This is due to greater compute
and data parallelism, as well as the availability of more nodes
to select better compute resources w.r.t. the location of the
intermediate data. We hope to fully validate this encouraging
preliminary scale result on a much larger edge system in the
future.

To see the scalability of Nebula in the presence of large
intermediate data as well, we present results for a second
MapReduce application, InvertedIndex. The InvertedIndex pro-
gram creates an index to identify which files contain which
words. The output is often used as one of the steps to
enable fast searching through text documents. As opposed
to Wordcount which provides high reduction of input data,
InvertedIndex is characterized by an expansion of the input
data. Figure 8 shows the performance of Nebula as it creates
an inverted index from 500MB, 1GB, and 2GB text files. As
shown in Figure 4(b), the total runtime increases as we increase
data size. Though the InvertedIndex causes expansion of the
input data, the results are similar to the previous results for
Wordcount (Figure 4(b)) which provides high reduction of in-
put data. We see that the system still scales with InvertedIndex
as with Wordcount as the problem size expands.

E. Concurrent Applications

Lastly, we show that Nebula is able to run concurrent
MapReduce applications. Figure 9 shows the performance of
two concurrent Wordcount applications running in Nebula,
as compared to a single application. These experiments use
an input data size of 250MB, along with 250 map and 80
reduce tasks. As expected, the performance of each application
(Concurrent-A and Concurrent-B) is worse than that of a single
application running in the system. However, their performance
is similar to each other. Nebula currently multiplexes its
resources equally among concurrent applications, and more

 0

 500

 1000

 1500

 2000

 2500

500MB 1GB 2GB

R
un

 T
im

e
(s

)

Data Size

MAP
REDUCE

Fig. 8. Data Scalability of Nebula.

 0

 200

 400

 600

 800

 1000

 1200

No-Concurrent Concurrent-A Concurrent-B

R
un

 T
im

e
(s

)

MAP
REDUCE

Fig. 9. Concurrent Nebula applications.

sophisticated cross-application resource management policies
(e.g., proportional-share or priority-based) are part of future
work discussed later.

VI. RELATED WORK

Nebula is related to projects in a number of different
areas. Volunteer edge computing and data sharing systems
are best exemplified by Grid and peer-to-peer systems includ-
ing, Kazaa [17], BitTorrent [4], Globus [8], Condor [13],
BOINC [1], and @home projects [15]. These systems provide
the ability to tap into idle donated resources such as CPU
capacity or aggregate network bandwidth, but they are not
designed to exploit the characteristics of specific nodes on
behalf of applications or services. Furthermore, they are not
designed for data-intensive computing.

Other projects have considered the use of the edge, but their
focus is different. Cloud4Home [10] is focused on edge storage
where Nebula enables both storage and computation critical to
achieving locality for data-intensive computing. Other storage-
only solutions include CDNs such as Amazon’s CloudFront
that focus more on delivering data to end-users than on
computation. Cloudlets [18] is a localized cloud designed
for latency-sensitive mobile offloading though it is based on
heavyweight virtualization technologies.

There are a number of relevant distributed MapReduce
projects in the literature [12], [14], [9]. Moon [12] is focused
on voluntary resources but not in a wide-area setting. Hierar-
chical MapReduce [14] is concerned with compute-intensive

MapReduce applications and how to apply multiple distributed
clusters to them, but uses clusters and not edge resources. Our
recent work [9] is focused more on cross-phase MapReduce
optimization, albeit in a wide-area setting. Estimating network
paths and forecasting future network conditions are addressed
by projects such as NWS [20]. We have used simple active
probing techniques and network heuristics for prototyping and
evaluation of network paths in our Nebula Monitor. Existing
tools [16], [7], [11] would give us a more accurate view of the
network as a whole.

VII. CONCLUSION AND FUTURE WORK

We presented the design of Nebula, an edge-based cloud
platform that enables distributed in-situ data-intensive com-
puting. The Nebula architectural components were described
along with abstractions for data storage, DataStore, and com-
putation, ComputePool. A working Nebula prototype running
across edge volunteers on the PlanetLab testbed was described.
An evaluation of MapReduce on Nebula was performed and
compared against other edge-based volunteer systems. The
locality-aware scheduling of computation and placement of
data enabled Nebula MapReduce to significantly outperform
these systems. In addition, we showed that Nebula is highly
robust to both transient and crash failures. Future work in-
cludes expanding the range of data-intensive applications and
frameworks ported to Nebula and validation of our initial
findings on a much larger scale. We also plan on first-
class support for resource partitioning across frameworks and
applications running across shared Nebula resources. Lastly,
we plan on expanding the range of DataStore features to
include the injection of external data and techniques for both
aggregation and decomposition across distributed resources.

ACKNOWLEDGMENT

The authors would like to acknowledge NSF Grant: NSF-
CSR 1162405, which supported this research.

REFERENCES

[1] D. P. Anderson. BOINC: A System for Public-Resource Compting and
Storage. In Proceedings of the 5th ACM/IEEE International Workshop
on Grid Computing, 2004.

[2] A. Chandra and J. Weissman. Nebulas: Using Distributed Voluntary
Resources to Build Clouds. In HotCloud’09: Workshop on Hot topics
in cloud computing, June 2009.

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: an overlay testbed for broad-coverage
services. ACM SIGCOMM Computer Communication Review, 33(3):3–
12, July 2003.

[4] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings
of the First Workshop on the Economics of Peer-to-Peer Systems, June
2003.

[5] F. Costa, L. Silva, and M. Dahlin. Volunteer Cloud Computing:
MapReduce over the Internet. In Fifth Workshop on Desktop Grids
and Volunteer Computing Systems (PCGRID 2011), May 2011.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Sixth Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[7] A. Downey. Using pathchar to estimate Internet link characteristics. In
In Proceedings of ACM SIGCOMM, pages 241–250, 1999.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. In Proceedings of the Global Grid Forum, June 2002.

[9] B. Heintz, C. Wang, A. Chandra, and J. B. Weissman. Cross-Phase
Optimization in MapReduce. In Proceedings of the IEEE International
Conference on Cloud Engineering, IC2E’12, 2013.

[10] S. Kannan, A. Gavrilovska, and K. Schwan. Cloud4Home – Enhancing
Data Services with @Home Clouds. International Conference on
Distributed Computing Systems, pages 539–548, 2011.

[11] K. Lai and M. Baker. Measuring link bandwidths using a deterministic
model of packet delay. In in Proceedings of ACM SIGCOMM, pages
283–294, 2000.

[12] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and Z. Zhang.
MOON: MapReduce On Opportunistic eNvironments. In Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing, HPDC ’10, 2010.

[13] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter of idle
workstations. In ICDCS, pages 104–111, 1988.

[14] Y. Luo and B. Plale. Hierarchical MapReduce Programming Model and
Scheduling Algorithms. In 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), May 2012.

[15] D. Molnar. The SETI@Home problem. ACM Crossroads, Sept. 2000.
[16] A. Pasztor and D. Veitch. Active Probing using Packet Quartets. In

In ACM SIGCOMM Internet Measurement Workshop, pages 293–305,
2002.

[17] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.
Levy. An Analysis of Internet Content Delivery Systems. In Proc. of
Symposium on Operating Systems Design and Implementation, 2002.

[18] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case
for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing, 8(4):14–23, October 2009.

[19] J. B. Weissman, P. Sundarrajan, A. Gupta, M. Ryden, R. Nair, and
A. Chandra. Early Experience with the Distributed Nebula Cloud.
In Proceedings of the fourth international workshop on Data-intensive
distributed computing, DIDC ’11, pages 17–26, 2011.

[20] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting Service for
Metacomputing. Journal of Future Generation Computing Systems,
1999.

[21] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullaga. Native client: a sandbox for
portable, untrusted, x86 native code. In Proceedings of IEEE Security
and Privacy, 2009.

